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1. INTRODUCTION 

Let A = (apP) be a real symmetric matrix of order n. A Jacobi method 

[l] for determining the eigenvalues of A consists in constructing a sequence 

of matrices A, = (a$ where A, = A, 

A k+l= &A,&“, k=0,1,2 )..., (1.1) 

and where U, is an orthogonal matrix which up to a similarity transforma- 

tion by a permutation matrix is equal to 

/ COST sin C#J 

i 

- sin+ cos+ 

1 

1 

The matrix U, is said to define a rotation of A. The pair of indices (i, j) 

(i < j) of the nontrivial superdiagonal element of U, is said to form the 

pivot of the rotation, and 4 is called its angle. The pivots and angles of 

the rotations U, depend on k. Generally they are selected in such a 

fashion that the sequence {Ak} converges to a diagonal matrix A, for 

if this is the case, then the diagonal elements of il are the eigenvalues 

of A. The closeness of A, to A is measured by the quantity 

* Dedicated to Professor A. M. Ostrowski on his 75th birthday. 
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A Jacobi method such that s,~ + 0 (K-F w) for all matrices A, is called 

convergent. 

In this paper we shall be concerned only with cyclic Jacobi methods. 

Here the N = &n(n - 1) different pivots are selected in some fixed 

cyclic order. If (i, j) is the pivot of the kth rotation, its angle bij is always 

chosen such that a$*” = 0 (the “rotated” element is annihilated). The 

product of the A’ rotations belonging to a full cycle is said to form a 

sweep of the cyclic method. Many cyclic Jacobi methods are known to 

be convergent [l, 2, 61. If the eigenvalues of .4 are distinct, and also in 

some other situations, the convergence is even known to be quadratic 

14-71, i.e., there exists a constant I< such that, if sa is sufficientlv small, 

s\- ,< KS”2. (1.3) 

In the present paper we shall study the convergence of certain cyclic 

Jacobi methods by scrutinizing the linear transformation inflicted upon 

the off-diagonal elements by a sweep. Let 

a 7’ 
= @,,; a13, a,,; . . . ; a,,,, a,,, . I $_l,$ 

be the vector of the A: superdiagonal elements of A (it is convenient to 

retain the double indexing of the elements of A). Using the euclidean 

norm, sk = /(a@(/. Let (i, j) denote the pivot of the kth rotation, and let 

& be its angle. The well-known formulas for any Jacobi method 

annihilating the rotated element can then be written 

where R’“13’ is a certain matris of order A’ (see Section 2 for a complete 

listing of its elements). It follows that 

a09 _ Ita!“) (1.4) 

where 

the factors appearing in the reverse order of the pivots. The matrix R 
will be called the Jacobi operator associated with the particular ordering 

under consideration. In addition to the ordering, R also depends on the 

angles of rotation c$,,, and thus on the matrix ‘4, I1 = R,,. R is not, of 

course, a linear operator in the sense that R,, ,i = II, + R,. On the 
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other hand, it can happen that the Jacobi operators R, and IL; belonging 

to two different orderings satisfy R, = Ra for all A. Two such orderings 

are called equivalent. It is shown in [2] and [5] that the orderings by 

columns ((1, 2); (1, 3), (2, 3);. . .; (1, n), (2, n), . . ., (n - 1, VZ)> and b> 

rows ((1, 2), (1, 3), . . ., (1, n); (2, 3), . . ., (2, n);. . . ; (n - 1, n)} are equiv- 

alent. 

Denoting by l/R’/ ( the spectral norm of R’, we shall prove : 

THEOREM 1. For al2 orderings equivalent to the ordering bJ1 coluv~nz.s 

and for all matrices A, 

IIRII d C, (1.5) 

n i-2 

c2 = 1 - n l--J co52 bij 
j=3 i=l 

(1.6) 

(empty prodmts are 1). 

If & is chosen in the interval [- n/4, n/4] (this is always possible 

ill), then cos dLj 3 2-l”, and 

c2 < 1 _ 2-1(“-2)‘“-1) < 1, 

Theorem 1 implies 

//a(sfll = jlRa(“)jI < Cl(a@jj; (1.7) 

hence all cyclic Jacobi methods whose orderings are equivalent to the 

ordering by columns converge at least linearly. 

The inequality (1.7) means the same as the result 

established by a different method in [6]. However, Theorem 1 is more 

general than (1.8), for it shows, in the more explicit notation used above, 

that llRAbll < Cllbjl f or all vectors b and not merely for the special 

vector b = ato) of the off-diagonal elements of A. We intend to make 

use of this observation in a subsequent paper. 

As shown in [6], the result (1.8) implies the quadratic convergence 

in the case of separated eigenvalues. This can be seen directly as follows. 
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By a variant of Bernoulli’s inequality, 

n cos2 Cij = n (1 - sin2 &) 3 1 - 2 sin2 dij; 

hence C2 < 2 sin2 djj, where products and sums are extended as in 

(1.6). If the eigenvalues iii of -4 satisfy IA, - Aji >, 26 (i # i), then for 

s0 sufficiently small it follows as in [6] that 

S-l 

2 sin2 I$,, < de2 2 (u$!)~ < 6-2s,2. 
k-0 

Hence (1.5) implies s*,~ < 6-2s 4 0 , which is Wilkinson’s form of the estimate 

(1.3) [7]. 

2. THE ROTATIOX MATRIX 

If Rfba3) = (req,J, th en it is easily shown that 

Yij,$j = 0, (2.1) 

7 - 1, P4,P9 - P f i, ? and 4#i,i; (234 

furthermore, if c = cos +ij, s = sin &, 

ypl,pi = C, Ypi,pj = S 
1 

Yfij,pi = _- S, yPj3Pj = 4 

y,p.ip = c, Y lP,Pi = 4 

YP,.l)+ = - s, ‘oj,py = CI 

r rp.ip = c~ 7 ~Q,IP = s I 

l;fi,ifi = - S, yjp,ip = 4 

l<P<i, 

i<P<j, 

j-cp<n. 

(2.3) 

AU1 remaining elements of RiiJ) are zero. If rij iJ were 1 instead of 0, the 

matrix R('*j) would be orthogonal. This can also be expressed as follows. 

We denote by epq (1 < p < q < n) the unit coordinate vectors in the 

space of vectors a and put 

E’“A’ = E _ e er’ 
PY Pq’ 

where E is the unit matrix. (h ‘(A~) is the diagonal matrix having a zero 

in the (p, q) position and ones in all other diagonal positions.) Then we 

have 

Linear Algebra and Its Applzcatiom 1, 489-501 (1968) 
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LEMMA 1. For all (i, j), 

R(“,i) = U(i,j)E(id > 

where @vi) is an orthogonal matrix. 

493 

3. THE INDUCTION STEP 

We now begin the proof of Theorem 1. It suffices to prove the theorem 

for the special cyclic ordering by columns. For n = 2, R is the zero 

matrix of order 1, and C = 0. Hence (1.5) is true for matrices of order 2. 

In order to step from n - 1 to n, where n > 2, let, for m = 2, 3, . . ., 11, 

R(“, = Rh-b;R(m-%m) . . . R(k”) 

Furthermore, let c 3 0, 

n-l j-2 

c2 = 1 - n n cos2 &, 
j=3 i=l 

(3.1) 

and denote by D the diagonal matrix whose first N - n + 1 diagonal 

elements are c and whose remaining diagonal elements are 1. 

LEM~IA 2. If Theorem 1 is trzle for matrices of order n - 1, then 

/IR/I < IIR’“‘DIl. (3.2) 

Proof. We have 

where the matrix 

R = R’“‘S (3.3) 

S = R(++i)R(n-s) . . . R(2) 

describes the state of the matrix A before the rotations of the elements 

in the last column. During the rotations of the columns 2 through n - 1 

of A, the elements in these columns are transformed exactly as they 

would be in a complete sweep of the Jacobi method as applied to the 

matrix A* obtained from A by deleting its last row and column. The 

elements in the last column of A, on the other hand, are coupled [l] 

only among themselves. Consequently, the (n - 1)-dimensional subspace 

corresponding to the elements in the last column is invariant during the 
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first 9* = 1%’ - ?a <- 1 rotations, and an>’ vector in it is transformed 

orthogonally. It follows that the matrix S has the form 

R* 0 
S= 

i 1 0 (it ’ 
(3.4) 

where 0 is a zero matrix, H* denotes the Jacobi operator (of order N*) 

associated with the matrix A*, and I-+ is an orthogonal matrix of order 

n - 1. 

By the definition of norm, 

(3.5) 

where y = Sx. We partition x in the form 

X* 
S= 

i 1 xt ’ 

where x* comprises the first N* components of x. If y is partitioned 

similarly, then by (3.4) 

jly*// =_ ~IR,*x*~~, lly+~l = l~X+/(. 

If Theorem 1 is true for matrices of order n - 1, then 

where C* = c as defined by (3.1). 

B’e first consider the case where c # 0. Then 

i~xIi2 = //x*1i2 + Jx+i12 

2 c-211Y*/~2 + J(Y+y2, 

and from (3.5) we get 

The supremum can only be enlarged if y runs through all vectors # 0 

and not merely those of the form Sx where x # 0. Letting y = Dz, we 

have 
c-2j/y*/12 + iiy+i12 = ljZl/2, 

Linear Algebra and Ifs Applicatiom 1, 489-501 (1968) 



NORMS OF CYCLIC JACOBI OPERATORS 495 

and the set of all y # 0 is obtained by letting z run through all nonzero 

vectors. Thus 

proving (3.2) for c # 0. 

If c = 0, then y* = 0 for every x, and hence y = Dy, where the 

diagonal matrix D now has zeros in its first N* positions. Hence (3.5) 

now may be written 

&ain, llx/12 = /ly/12, and the supremum is enlarged by letting y run 

through all vectors # 0. Hence 

whence Lemma 1 again follows. 

4. THE MATRIX R’“’ 

The norm of R(“)D will be found by calculating explicitly the eigen- 

values of DrR(“)rR@)D. In this section we shall determine the matrix 

R(“)rR(“) by expressing the quadratic form 

Q(x) = xrR(“)rR(“)x (4.1) 

in terms of the elements of x. 

Let V denote the space of vectors x with components xpq (1 <$ < q < n). 

If x is any vector in V, we let 

.(m) = R(“,“)R(-l?+) . . . R(‘dx 

In particular, R(“)x = x(‘+‘), and hence 

Q(x) = Il~(~-~)l/~. (4.2) 

For k = 1, 2,. . ., n - 1, let V, denote the k-dimensional subspace 

of V spanned by the coordinate vectors ~r,~, e2,k, . . . , e,_rg; ek,%. Clearly, 

Linear Algebra and Its Applications 1, 489-501 (1968) 



496 P. HENRICI .-\ND KATHARINA ZIMMERhlANS 

the spaces Vik are mutually orthogonal and together span the whole 

space V. For any x E V’, let 

x = x1 + x2 + . * * + X,-l’ 

where xk E V, (k = 1, 2, . . . , n - 1). We define 

Xfi(m) = R(V)R(“-i& . . . R(l.*)Xk, 

where m = 0, 1, . . . , n - 1. It is not asserted that xkcn) E V,. However, 

we have 

LEMMA 3. (i) For every m, 0 < m < n - 1, the n - 1 vectors x~(‘@, 

1 < k < n - 1, aYe mutually orthogonal. (ii) For k = 1, 2, . . . , 91 - 1, 

/IXk (72 = //xk(o)l12 _ [x~y)]2, 
(4.3) 

where xrxpl’ denotes the (k, n) component of x(‘-‘). 

Proof. In the notation of Lemma 1, let 

‘k 
(m) = E(m+i,n)Xk(m) 

Then for 1 <k<n- 1, O<m<n- 1, 

(4.4) 

‘k 
(m+ 1) = UC”+ l,n)xk(m) 

where E@+i,“) is orthogonal. 

(4.5) 

We now prove (i) by induction with respect to m. Clearly, the vectors 
(0) = x 

:Le 

1 < k < n - 1, are mutually orthogonal. Assume now that 

vectrrs x lrn) are mutually orthogonal for some m > 0. 

from the defimtion of R(@) that 

It follows 

Xi@), x2(m) 9 *. ., X,‘“‘EV1@V2@...@V~, (4.6) 

Xk[% Vk, m+l<k<n-1. (4.7) 

Of all vectors xi%), xE;i is the only one having a nonzero component 

in the direction of e,,, n. Hence by (4.4), 

z/N = ~PGL~),fi(~) = xdm) k#m+l. (4.8) 

Since 

.(m) = .r(m) + X2(M) + . . . + x;pl (4.9) 

Linear Algebra and Its AppZicahws 1, 489-501 (1968) 
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the remaining relation can be written 

#l 1 = xfi 1 - X(‘E’ 
m+l,n%b+l,n. (4.10) 

By (4X), the zkCR) are orthogonal for k # m + 1. By (4.7), xrli E V,,+r, 

and by (4.9) the same is true for z$i. Thus all n - 1 vectors zk@), 

1 < k < 12 - 1, belong to n - 1 different orthogonal subspaces, and 

hence are orthogonal. The vectors xkCrn’i’ result from the z~(“‘) by the 

orthogonal transformation (4.5) and thus are likewise orthogonal, which 

proves (i). 

To prove (ii), we apply (4.8) and (4.5) for fixed k and all admissible 

m. There follows 

I/% 
(m+n/(z = /(Xk(qZ for O<m<k-1 and k<m<n-1. 

On the other hand, by (4.10) and (4.5), 

l[Xkqs = I(xk(k-i)l(s - (x&-i))? 

The last two relations imply (4.3). The proof of Lemma 3 is compIete. 

By assertion (i) and by (4.9), 

lIX(m)l12 = ,z (Ixdm)l12, m = 0, 1,. . ., n 

By summing (4.3) with respect to k we thus get 

n-1 

/1x(+-1)112 - llx92 = -hz (432. 

In order to find Q(x), it thus remains only to express 

the components of x(O) = x. 

We write cos f& = c,, sin f+& 

to Section 2, we then have 

= s,, k = 1, 2, . . . , n - 1. According 

$4 = x Pn’ 

and generally for 1 ,( k < n - 1 

- 1. 

(4.11) 

xitP1) in terms of 

1<p<n-1, 

xf; = CnXpn ik--l’ - SkXkP, k<p<n-1. 

Hence it follows easily by induction that 

Linear Algebra and Its Applications 1, 489-501 (1968) 
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(empty products are 1). 

From (4.2) and (4.11) we now have 

(4.13) 

where A$-‘) is given by (4.12). Our final task is to determine the eigenvalues 

of the matrix of the quadratic form 

which is obtained from Q(x) by multiplying all fpq where q < n by the 

constant c. 

5. CALCULATION OF EIGENVALUES 

The representation (4.13) together with (4.12) shows that 

H -.- 1 

where 

The form Qk depends only on the variables +, . . , x~_,,~, xhn. Since 

each of the QI, depends on a different set of variables, the set of eigenvalues 

of Q(Dx) is the union of the sets of eigenvalues of the forms Qk. 
Let Q(“’ = (q$‘) be the matrix of Qk. (We return to simple indexing.) 

Q @) is a symmetric matrix of order k. It follows from (5.1) that for a 

suitable numbering of the elements, 

4 Ck) - c2(1 - St2C;+lC;+2. . . c;_1), t* - 1<t</Z-1, 

&I ZX I - c12c22 * * * c,‘_,, 

Linear Algebra and Its Applications 1, 489-501 (1968) 
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LEMMA 4. The eigenvalues of Qfi are 

i,=o; 

1, = 1, = * *. = lk_l = 3; 

Ak = 1 - (1 - cz)c1zc22 * . * c;_,. 

Proof. To show that 0 is an eigenvalue, we show that the rows of 

Q w are linearly dependent. To this end we multiply the tth column by 

W: 1 * * * c~_~ (1 < t < k - l), and the kth column by - cc1c2* * * ck_,. 

The nondiagonal elements of the sth row are then 

(a) for I<s<k-I, 

- c2&c,+1 ’ . . ck_1(sj$+ml ” ’ ck_1)2, l,ct,ck-l, t#s, 

- c2ssc,~L1 * * . Ck ~I(clcz * * * Ck_J2, t = k; 

(b) for s = k, 

CClC2. * ’ C&tC~+l ” ’ ck._1)2> l<t<k-1. 

Using the identity 

li- I 

( $5 * . . C&l j2 + c (StCt, 1. * * ce_J” = 1, (5.2) 
1=1 

we thus find for the sum of the nondiagonal elements in the sth row 

.2 - L ssc,+1 * '. Ckml [(s,c,,l * . * ck_l)2 - lj, 1,(&k-l, 

and 

C2ClC2 * . ’ $-ljl - (c& * * ’ C,;_l)2], s=k 

These are just the negatives of the diagonal elements of the modified 

matrix, proving that the sum of its rows is zero. 

To show that c2 is an eigenvalue of multiplicity > k - 2, we show 

that the rank of the matrix Qk - c21, (I, = k-dimensional unit matrix) is 

Linear Algebra and Its Applications 1, 489-501 (1968) 
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at most 2. Indeed the tth column of this matrix (1 < t < k - 1) is 

s/t ,.r * . . CA-1 times the vector 

I 
- c25.1c2 ’ ’ ’ CA_, 

- c%zc3 * ’ . (‘1; I 

. . . 

- C%-, 

CClC2 * . * cfi , 

thus the first k - 1 columns are all proportional to the same vector, and 

the matrix contains at most two linearly independent columns. By a 

familiar fact from linear algebra (see, e.g., Theorem 7.6.1 of [4]) it follows 

that c2 is an eigenvalue of multiplicity 3 k - 2 of Q@). 

To determine the remaining eigenvalue, we use the fact that the trace 

of a matrix equals the sum of its eigenvalues. Using (6.2), the trace of 

QCk) is 

(k - l)c2 - c2[l - (c1c2. . * C,<_,)“j im 1 - (c1c2.. . Ck_ ,)3 

= (k - 2)c2 + 1 - (1 - c2)(c1c2 * . . c,;_ ,)2. 

The sum of the k - 1 eigenvalues already found is (k - 2)~~; hence it 

follows that the remaining eigenvalue is 1 ~- (1 - c2)(c1c2 . * * c~_~,)~, 

proving Lemma 4. 

In view of the definitions (3.1) of c and of the c~, the largest eigen- 

value of all Q@) (k = 1, 2,. . ., n - 1) is 

i = 1 - (1 - c2)c1%,2. . . ii-L) 

IZ j-2 
= 1 - n ncoY2Q;iJ. 

Icyz=l 

The theorem now follows in view of Lemma 2 and the fact that / JR’“‘D) / = 
A”2. 
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